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Sufficient conditions are given to ensure that

lim B
n
(_Z_) = e"

n_oo n+ I
for all z E C,

A= I or 2, 0 '" IXn E C, fln E Co

where the Bn(z) are defined by three-term recurrence relations

and hence are nth denominators of continued fractions

(XtZ..l. CC2Z;' CX3ZA

I+Plz+I +P2z+1 +P3Z+

Here y:=(2-A)IX+P, where 1X:=limlXn and p:=limPn. In addition to proving
uniform convergence on compact subsets of C, we obtain explicit information on
the order of convergence of the sequences {Bn(z/(n+ I)l} and {p~n)}:~l' where
E~'~opr)zk := Bn(z/(n + I )). Important types of continued fractions subsumed
under the above class include regular C-fractions, general T-fractions, and
associated continued fractions, all three of which have their approximants in Pade
tables. Since J-fractions are essentially equivalent to associated continued fractions,
many of our results describe the asymptotic behavior of orthogonal polynomial
sequences. © 1992 Academic Press. Inc.

1. INTRODUCTION

Polynomial sequences {Pn(z)} satisfying three-term recurrence relations
of the form

Pn(z) =bn(z) P n- dz) + an(z) P n- 2 (z), n = 1, 2, 3, ..., (1.1)
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68 JONES, THRON, AND WYSHINSKI

where the an(z) and bn(z) are polynomials in z of degree at most two arise
in the study of orthogonal polynomials [3, 5, 12, 14] and continued
fractions [9]. With suitable initial conditions

or (1.2)

Pn(z) becomes the nth numerator An(z) or denominator Bn(z) of the
continued fraction

K(an(z)) _ a j (z) a2(z) a3 (z)
n~ 1 bn(z) - bdz) + b2(z) + b3 (z) + ....

One of the authors [15] has recently proved that if

(1.3 )

00

L: ladz)-a(z)l<oo
k~j

then the sequences

and

and

00

L: Ibdz) - b(z)1 < 00
k~l

(1.4)

(1.5 )

converge to hoiomorphic functions. Here X2(Z) is determined by the
condition that Ixdz)jX2(Z)1 < 1, where xdz) and X2(Z) are fixed points
of the transformation T(w) = a(z)j(b(z) + w); that is, solutions of
w2+b(z) w - a(z) = O. This phenomenon is called separate convergence
since both sequences (1.5) converge and hence the approximant sequence
{An (z)jBn(z)} of (1.3) is convergent. Recent work on separate convergence
(see, e.g., [7,11,15-17] and references contained therein) is closely related
to the study of asymptotic properties of orthogonal polynomials [14,
Chap. VIII; 19, 20].

In the present paper we are concerned with the behavior of the sequences

and (1.6)

(1.7)

where An(z) and Bn(z) denote the nth numerator and denominator,
respectively, of continued fractions of the form

n~ C~;:z),
If we wanted to prove only the convergence of the sequences (1.6), this
could be done in some cases more easily than in the approach employed
in this paper. For example, in the case in which (1.4) holds, one can use
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the convergence result in [15] applied to (1.5) and the convergence of
{[-x2 (z/(n+1))]n+l} to deduce locally uniform convergence of (1.6).
However, we know of no way to extend this to the other three cases dealt
with (in Theorems 4.1 and 4.2) where (1.4) does not hold. More impor
tantly, our goal is not only to prove convergence of (1.6) but also to obtain
explicit estimates of the speed of convergence of the functions En (z/(n + 1))
and of their coefficients.

Consideration is given to continued fractions (1.7) which are limit
periodic,

lim ('4=aEC
k~ 00

and lim Ih = {3 E C,
k~ 00

(1.8 )

and to those that are partly limit-periodic, satisfying

and (1.9)

so that unbounded sequences {ad are permitted. For both cases (1.8) and
(1.9) a unique pair (a, {3) of complex numbers is determined by setting
11.=0 if (1.9) holds but not (1.8). x dz) and X 2 (z) denote the roots of the
quadratic equation

given by

(1.10)

1+ {3z [-xm(z)=-2- 1+(-l)m 4az"- ]
1+ (l + {3z )2 ' m= 1, 2. (1.11)

Since no branch point of the expression r in (1.11) occurs at z = 0, a
region D containing a neighborhood of the origin exists and a branch ofr exists such that Re r > 0 for all ZED. Hence the functions xm(z)
are well defined for ZED and satisfy

for ZED. (1.12)

In the sequel it is convenient to let no (R) denote the least integer satisfying

Z
-ED
n

for all Izi ~ Rand n ~no(R). (1.13)

We also employ the notation

y:=(2-2)a+{3,

00

L1:= L (ak- a ),
k~2

00

e:= L ({3k - {3),
k~l

(1.14)
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when the series in question converge. One of the main results of the paper
(Theorem 4.1 (A)) is that, if

and (1.15)

then

B( z ) [FZ2+(e-p)Z (A-2tX)ZA] (1)-- -eYZ=eYZ + +0 -
n n + 1 n nA n '

(1.16)

where o( lin) --+ 0 as n --+ 00, uniformly for Iz I ::::; R. From this it is shown
(Theorem 4.2 (A)) that, if Pkn

) are coefficients defined by

then

( Z) d
n

B -- =' " p(n)zk
n +1 . L... k ,

n k~O

dn ::::; n, n = 1, 2, 3, ..., (1.17)

(1.18a)

(1.18b)

We are therefore able to give not only the limiting values of
{Bn(zl(n+1))}:'=1 and {Pkn)}:,~l' but also explicit information about
their order of convergence. Since

dn

where L bknlzk:= Bn(z),
k=O

(1.18) yields knowledge about the coefficients bkn
) of Bn (z). Results similar

to (1.16) and (1.18) are also given (Theorems 4.1 and 4.2(B)) under weaker
conditions than (1.15). However, as expected, the information on the order
of convergence is less explicit. By means of Theorem 4.4 one sees that all
results for denominators Bn(z) in Theorems 4.1 and 4.2 are applicable to
the numerators An(z) as well.

Our proof of Theorem 4.1 is based on properties of the functions xm(z)
and Bn(z) developed in Sections 2,3, and 4. A central role is played by the
recurrence relations

B_ 1(z) := 0, Bo(z) := 1, Bn(z):= (1 + Pnz) Bn- 1(z) + tXnz ABn_ 2(z), n ~ 1,

(1.19)
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that define the polynomials Bn(z). Bounds for and convergence of the
sequences {[xm(z/n)]n~k}:~, are derived in Section 2 where it is shown,
in particular (Lemmas 2.1 and 2.2), that, for a fixed non-negative integer k,

lim x, (~) = lim [-x, (~)Jn~k= 0, (1.20a)
n-oo n n-oo n

}~~ [-x2(~)J=I, }~moo [ -X2(~)r-k =eYZ
• (1.20b)

The main result of Section 3 gives a uniform bound for the sequences
{Bdz/(n + l))}:~" 1~k <n, 1zl ~ R (Lemma 3.1).

Three important types of continued fractions are subsumed under the
form (1.7), all closely related to Pade tables. These continued fractions are
of the forms

and

and are referred to in the literature as regular C-fractions, general T-frac
tions, and associated continued fractions, respectively. In Section 5 we
describe the application of Theorems 4.1 and 4.2 to each of these three
types of continued fractions. Examples are taken from families of hyper
geometric functions 2F, (A, B; C; z) and ,F, (B; C; z). We also consider real
J-fractions

00 (-K )K L nr , K, = - 1, Kn > 0
n~' n+"

for n ~ 2

and for n~ 1, (1.22)

whose denominators BAO provide all orthogonal (monic) polynomial
sequences. By establishing a simple relation between Bn(O and the nth
denominator Bn (z) of the related associated continued fraction in (1.21), all
convergence results derived for {Bn(z)} can be applied to the sequence of
orthogonal polynomials {Bn(O}. In this way we obtain asymptotic proper
ties of orthogonal polynomials analogous to those found in [14, Chap. 8].
An example involving Legendre polynomials is included.

2. CONVERGENCE AND BOUNDS FOR SEQUENCES

In this section we state and prove results about the roots xm(z) of the
quadratic equation (1.10) that are subsequently used.



72 JONES, THRON, AND WYSHINSKI

(2.1 )

LEMMA 2.1. Let R > 0 and k ~ 0 be given. For Iz I:::;, Rand n ~ no(R), let
fl (z, n), f2 (z, n, k), and f3 (z, n, k) be defined by

(
Z) yz (-I);'a(a+Pf-;'z2 fl(z,n)

-X2 - = 1+-+ +--,
n n n2 n3

[ (
z)Jn - k yz yz [rz

2
- kyz +f3 (z, n, k )J

-X2 - -e =e 2 •
n n n

(2.2)

(2.3 )

Then there exist n2 (R), F I (R), F2(R, k), F3(R, k) such that for Iz I:::;, Rand
n ~ n2(R),

I fdz, n)1 :::;, FdR) < 00, I fv(z, n, k)1 :::;, Fv(R, k) < 00,

Moreover, there exists a KdR, k) such that

v=2, 3. (2.4)

for Izl:::;' R and

Proof From the theory of Taylor series one has, for Iu I< 1 and
Ivi < 1,

u-+O, (2.6)

and

V -+0, (2.7)

where the functions on the left are principal branches. Setting

2pz p2Z2 4az)'
u:=-+-+-n n2 n). (2.8)

(2.9)

it is clear that there exists an n l (R) ~ no(R) such that Iu I:::;,! for Izl :::;, R
and n ~ n l (R). If f(z, n) is defined by

(
Z) pz az)' a2z2;, apz)' + I f(z, n)

-X2 - =1+-+-.---.---+--,
n n n" n 2', n)'+ I n 3

then, using (1.11) and (2.6), we conclude that there exists an F(R)
satisfying

I f(z, n)1 :::;, F(R) < 00 for Iz I:::;, 1 and
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If A. = 1, then (2.9) becomes

-X2 (~) = 1+ (et +!) z et(et :!) Z2 +f(~3n)

and if A= 2, it becomes

(
Z) f3z etz2 f(z, n) - etf3z3- et 2z4/n

-X2 - =1+-+-+ .
n n n2 n3

73

Thus with fdz, n) :=f(z, n) when A= 1 and fdz, n) :=f(z, n)
etf3z3- et2z4/n when A= 2, it follows that there exists a function F I (R)
satisfying the first inequality in (2.4) for 1z 1 ,,;; Rand n ~ ndR).

Next we set

v := -X2 (:.) _ 1= yz + (_1)A 0:(0: + f3f-;' Z2 +fdz, n)
n n n2 n3 (2.10)

and choose n2(R) ~ ndR) so that I v I ,,;; ! for Iz 1,,;; Rand n ~ n2(R). Then
if g v (z, n, k) are defined by

k
(-I)Aet(et+f3)2-Az2-kyz gl(z,n,k)

(n - ) v = yz + + 2 '
n n

it follows from (2.1) and (2.4) that there exist Gv (R, k) such that

I gy(z, n, k)1 ,,;; Gy(R, k) for Izl";; R and n ~ n2 (R), v = 1, 2, 3.

(2.11 )

(2.12 )

(2.13 )

Combining these results with (2.7) yields

[ -X2(~)r- k

= (1 + vt- k =e(n-k)v-(1/2)(n-k)v2 +(n-k)O(v))

from which we arrive at (2.5) and the second inequality in (2.4). I

LEMMA 2.2. Let R > 0 and k ~ 0 be given. For 1z I,,;; Rand n ~ no(R) let
f4 (z, n), fs (z, n), and f6 (z, n, k) be defined by

-XI (:.)= -(2-A)etZ+f4 (z,n),
n n n2

1 f3z 2etzA fs (z, n)
----------=1----.+--,
xdz/(n+l))-x2(z/(n+l)) n n;' n2

[ (
z)Jn-k [-(2-A)o:zJn-k

-XI ~ = n f6(Z, n, k).
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Then there exist nz(R), F4(R), F5 (R), and F6(R,k) such thatfor Izl ~R
and n ~ nz(R),

Ifv(z, n)1 ~Fv(R)< 00, v=4, 5, (2.14 )

Moreover, ijO<q< 1, then there exists a Kz(R, k, q) such that

I[ - (~)Jn-kI Kz(R, k, q)
Xl ~ ( -k)n nq n

for Izi ~R and

(2.15 )

Proof Let nz(R) be chosen as in Lemma 2.1. By (1.11), -xdzjn)=
1 + f3zjn + X z(zjn). Applymg (2.1) to this we obtain (2.11) with

f4(z,n)= -(-I)"a(a+f3)Z-"zZ-fdz,n)jn. (2.16)

From this and the first inequality in (2.4) it follows that there exists an
F4(R) such that If4(Z, n)1 ~F4(R)< 00 for Izl ~R and n~nz(R).

From (2.1) and (2.11) we see that if!(z, n) is defined by

xdzj(n + 1)) - X z(zj(n + 1)) = 1+ f3zjn + 2az"jn" +!(z, n )jnZ,

then there exists an F(R) such that I!(z, n)1 ~ F(R) < 00 for Iz 1~ Rand
n ~ nz (R). The assertion regarding (2.12) follows.

From (2.11) and (2.13) it is readily seen that

It follows from this and from (1.11), (2.1), and (2.16) that there exists an
F6(R, k) such that I f6(Z, n, k)1 ~ F6(R, k) < 00 for 1 z I ~ Rand n ~ nz(R).
Finally the assertion about (2.15) is a direct consequence of (2.13) and
(2.14). I

We note that the equalities in (1.20a) follow from Lemma 2.2 and the
two equalities in (1.20b) follow from Lemma 2.1.

3. BOUNDS FOR {Bdzj(n+ I))}

The main result of this section is

THEOREM 3.1. (A) If there exist constants E> 0,0 < r ~ 1, 0 < (1 ~ 1 such
that

or
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00

L: I/h-PI<oo
k=l

or for k ~ 1, (3.1b)

then for each R > 0 there exists a constant M(R) such that

IBk(n:l)I~M(R) for Iz I~ R, 0 ~ k < n and n~O. (3.2)

(B) If A. = 2, then condition (3.1 a) can be replaced by

£>0, J1< 1, k~ 1. (3.3 )

Our proof of Theorem 3.1 makes use of several lemmas. Lemma 3.2
corresponds to the comparison equation set up in [20, (2.10)]. In a
disguised form (3.6) occurs in [6]. See also [15, 18]. It is stated here for
completeness.

LEMMA 3.2. Let (a, b) be a given pair of complex numbers, let {ad and
{bd be given sequences of complex numbers, and let {Bd, {Dd and {l1d
be defined by

and

k = 1, 2, 3, 00"

k = 1, 2, 3, 00 ••

(3.4 )

(3.5)

If Xl and X 2 denote the roots of the quadratic equation w2 + bw - a = 0, then
for n~ 1,

(Xl-X2)En=(-X2r+l_(-xdn+l

n-l
+ L [( -X2r- k - (-xd n

-
k] l1k+ lBk

k=O

n-l
+ L [( -X2r- k - (-x1r- k

] Dk+1Bk- 1· (3.6)
k=O

Returning now to the denominators Bn(z) of the continued fraction (1.7)
which are defined by the recurrence relations (1.19), we introduce the
notation

(3.7)

which exhibits the explicit dependence of Bn on (XI> '00' (Xn and PI> •••, Pn- The
nth denominators Bn(z) of the related continued fraction

K
oo

( I (Xn I ZA )

n=l 1+ IPnl z ' (3.8)
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which are defined by the recurrence relations

n = 1, 2, 3, ...,

can then be expressed as follows:

(3.9)

With a and f3 being given complex numbers, we also introduce the notation

A := Ia I, B := If31, bn := an - ct, YIn = f3n - f3,

I n= lanl-A, ~n= lf3nl- B, (3.11)

and write

1+ Bz [ J 4Az
A

]-xm(z):=-2- 1+(-l)m 1+(I+Bzf ' m= 1,2, (3.12)

where r is chosen so that Re r > 0 for zED and hence

for ZED. (3.13)

The expression involving r in (3.12) has two branch points z± which
either are both real and negative or else are complex conjugates which lie
in the half-plane Re(z)~O. Thus the region D in (3.13) can be (and is)
chosen to contain the half-plane Re(z) > 0 as well as z = O. Therefore
r/(n+ I)ED provided r>O and n~O.

Applying Lemma 3.2 to {Bn (z)} and replacing z by r/(n + 1) yields

LEMMA 3.3. For r > 0 and n ~ 0,
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LEMMA 3.4. For each R > 0 there exist constants ~dR) and ~2 (R) such
that, for 0 < r ~ Rand n ~ 0,

I-xmc: 1)ln+ I~ ~m(R), m = 1, 2, (3.15)

!(-X2C:l)r-
k
-( -Xlc:l)r-kl~2~2(R), O~k<n, (3.16)

IXIC:I)-X2C:I)I~1. (3.17)

Proof Inequalities (3.15) are readily established by applying
Lemma 2.1 (for m = 2) and Lemma 2.2 (for m = 1). By (3.12) with m = 2
and (3.13) we obtain

I( -x2 C: 1)r- k

- ( -XI C: lr-
k )1

~ I-X2C: 1)ln-k [ 1+ IXI C: 1)/x2C: 1)ln-
k

J
~21x2 C: 1)ln-k ~21X2C: 1)ln+l ~2~2(R)

for all 0 < r ~ R, 0 ~ k < n, n ~ O. Finally (3.17) is an immediate conse
quence of (3.12) I

The following lemma, established in [15, Lemma 2.2] and [20, p.440]
is the discrete version of Gronwall's inequality (see, e.g., [1, p. 455]). It is
stated here for completeness.

LEMMA 3.5. If a sequence {8n} satisfies

then

n-I
o< 8n ~ K + L Yk + 1 8k> 80 ~ K> 0, Yk + I ~ 0,

k~O

for n ~ 1, (3.18)

n

8n ~ K n (1 +Yk),
k=1

n = 1, 2,3, .... (3.19)

Proof of Theorem 3.1. (A). By Lemmas 3.3 and 3.4, for 0 < r ~ R,

Bn(n : 1) ~ ~ 2 (R) + ~ I (R) + 2~ 2 (R) :~: [I ~k+ I In : 1Bk (n : 1)
+ Ibk + II C: 1)'" Bk _ 1 C: 1)]

640j71jl-6
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and since, Bk(r/(n + 1)) ~ Bdr/(k + 1» and Bk_ dr/(n + 1)) ~ Bk_ dr/k),
we have

(3.20)

Noting that B_ 1 (r/k) = 0 and adding 2~2 (R)I In + 1 I(R/n)A Bn _ dr/n) to the
right side of (3.20) gives

(3.21 )

By setting, for 0 ~ k ~ n - 1,

K:= ~dR) + ~2 (R), Sk:= Bkc: 1)
and

we see that So = 1< K, Sk > 0, and Yk + 1 ~ 0 so that an application of
Lemma 3.5 gives

Bn c: 1) ~ (~I (R) + ~2(R)) }]I [1+ 2~2 (R) (I qk I~ + IJk+ 11 (~r)1
(3.22)

The righthand side of (3.22) forms a non-decreasing sequence which
converges as n -+ 00 to a finite limit M(R) provided that

and

or

or

or

E> 0, 0 < r ~ 1, k ~ 1,

E>O,O<(7~I,k~l

(3.23a)

(3.23b)

A. = 2, (3.23b) holds, and
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Our proof is completed by observing that, since

and

79

the hypotheses of Theorem 3.1 imply that either (3.23) or (3.24) hold and
hence

1
(

Z)I A ( IZI) A (IZI)Bk n+ 1 ~Bk n+ 1 ~Bk k+ 1 ~M(R)

for 1Z 1~ R, 0 ~ k < n, n~ O. I

4. CONVERGENCE OF {Bn(z/(n+ I))}

The main results of this paper are summarized in Theorems 4.1 and 4.2.
Sufficient conditions are given for the convergence of {Bn (z/(n + I))} and
of the coefficient sequences {pin)}:~o, where Bn(z) denotes the nth
denominator of a continued fraction of the form

(4.1 )

and

( Z) d
n

B -- =' '\' p(n)zk
n +1 . L.., k ,

n k~O

The four different sets of sufficient conditions are

(4.2)

and
00

IIPk-PI<oo;
k=l

(4.3 )

IIXk-1X1 ~Ek-l and IPk-PI ~Ek-l, for E>O, k~ 1; (4.4)

IIXk-IXI~Ek-T and IPk-PI~Ek-<T, E>O,k~l, (4.5a)

where

O<T~1 and 0<0"<1 or O<T<1 and 0<0"~1;

(4.5b)

and for E>O,k~l,

(4.6a)
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O<r<1 and O<a~1. (4.6b)

For convenience we recall the notation

y:=(2-A)a+p,

00

A:= L (ak- a ),
k=2

00

e:= L (Pk-P),
k=1

(4.7)

when the series in question are convergent.

THEOREM 4.1. (A) /f(4.3) holds and tdz, n) is defined by

(
z ) [Fz2+(e- p )z (A-2a)ZA] tdz,n)B -- _eyz=eYz + +--

n n + 1 n nA n'

then there exists a function T I(R, n) such that, for Iz I~ Rand n ~ 1,

(4.8)

It l (z, n)1 ~ T I (R, n) and lim TI(R,n)=O.
n~ 00

(4.9)

(B) Let ty(z, n), v = 2,3,4 be defined by

(4.10)

(4.11 )

(4.12)

Then there exist functions Ty(R) such that for v= 2,3,4, if (4.2 + v) holds
then

and n~ 1. (4.13 )

THEOREM 4.2. Let pin) be defined by (4.2).

(A) .if (4.3) holds then,for n ~ 1,

(n) (2-A)(A-2a)+(e-p) (1)
p~n)= 1, PI =y+ +0 - ,

n n

(n) _ yk yk-2[(k_l) F+ y(e - P)]
Pk -k!+ n(k-l)!

yk-A(A-2a) (1)
+ nA(k-A)! +0 ~ ,

(4.14a)

(4.14b)
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(B) Moreover, for k = 1, 2, ..., dn and n ~ 1,

81

and

°co

:

n

)
if (4.4) holds,

if (4.5) holds,

if (4.6) holds.

(4.15)

Proof of Theorem 4.2. It follows from the recurrence relations (1.19)
that p&n) = Bn(O) = 1 for all n ~ O. By the Cauchy integral formulas one has
for k= 1, 2, ..., dn , and n ~ 1,

(n)_yk __1 f Bn(z/(n+1))-e YZ

dPk k'- 2 . k+ 1 Z.. m Izi =r Z
(4.16)

The assertions of Theorem 4.2 follow from this and from the estimates
given for Bn(z/(n+ 1))-eYz in Theorem 4.1. I

The following lemma is used in our proof of Theorem 4.1. It is also
convenient to introduce the notation

and

(4.18 )

and to recall ()k := rJ. k - rJ., 17k := Ih - {3, y := (2 - A) rJ. + {3.

LEMMA 4.3. (A) If r.,:,= 1 I()k I < OCJ and Sl (z, n) is defined by

n-l 00

sdz, n):= L Xn,k(z)-eYz L ()b
k~O k~2

(4.19)

then there exists a sequence offunctions {S1 (R, n)} satisfying for alii z I~ R
and n~ 1

Isdz, n)1 ~ SdR, n) and lim SdR, n) = O.
n_ 00

(4.20)
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(B) If Lr:~ I I11k I< 00 and S2 (z, n) is defined by

n-l 00

S2(Z, n):= L Yn,dz)-e Yz L 11k,
k~O k~1

(4.21 )

then there exists a sequence offunctions {S2 (R, n)} satisfying for alii z I~ R
and n ~ 1

and lim S2(R, n)=O.
n~ 00

(4.22)

Proof of Lemma 4.3. By (1.12) and (1.13)

I
-XdZj(n+ 1))1
-x2(zj(n+ 1)) < 1

for all Iz I~ R and

By a proof similar to that used for (3.15) with m = 2 one can show that for
each R > 0 there exists a constant ~2 (R) satisfying

I ( z )In-k I (Z )!n+1-X2 -- ~ -X2 --
n+l n+l

~ ~2 (R) for Izl~R,O~k<n,n~no(R).

Combining these results with (4.17) yields

xiI + (-XI (zj(n + 1)))n-kj ~ 2~2(R) (4.23)
- X2 (zj(n + 1))

for Izl ~R, O~k<n, n~no(R). By (2.5), (2.15), and (4.17), for each R>O
there exist K 3(R, k) and n2(R) ~ no(R) such that

I () _ yz I~ K i R, k)(JnkZ e "'". n for Izi ~ R, 0 ~ k < n, n ~ n2(R). (4.24)

Since Bn(O) = 1, for each R > 0 there exists K 4(R, k) such that

for Iz I~ R, 0 ~ k < n, n ~ 1. (4.25 )
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(A) Suppose n > 2m. Then we can write
n~l 00

L Xn,dz)-eYZ L <>k+!
k~O k~!

n-l 00

+ L Xn,k(Z)- L eyz<>k+!'
k~m+! k~m+!

83

(4.26)

Let 8 > 0 and R > 0 be given. Then by (4.23), (4.24), and (4.25) there exists
an m so large that the third and fourth sums on the right side of (4.32) are
each in absolute value less than 8/4 for Iz I~ Rand n ~ n3 (R) =
max(m, n2 (R)). Now holding m fixed we choose n4 (R) ~ n3 (R) so large
that

I ( Z) I 8max Bk ! -- - 1 < ,
O,,;;k';;m - n+l 4L;~!leyz<>k+!1

and
8

O~ka:m IO"n.dz) - e
Yz

1< 4M(R) L;~! I<>k+II' for Iz I~ R, n ~ n4 (R),

where M(R) satisfies (3.2) of Theorem 3.1. Combining these results with
(4.26) establishes (A). A proof of (B) can be given that is completely
analogous to that given for (A); hence it is omitted. I

Proof of Theorem 4.1. Let R > 0 be given. An application of Lemma 3.2
to Bn(z) with z replaced by z/(n + 1) yields, for Iz I~ Rand n ~ no(R),

Bn c: 1) = [Xl c: 1)-X2c: 1)J- l

x{[ -X2C:l)T+l-[ -x I C:l)T+l

If hi (z, n) is defined by

[
_ (_Z)]n+l_hl(Z,h)

Xl n + 1 - n2 '

(4.27)

(4.28a)



84 JONES, THRON, AND WYSHINSKI

then by (2.15) there exist an HI (R) and n2(R) such that

Ihdz, n)1 ~ HdR) < 00 (4.28b)

Substitution of (2.12), (2.3), and (4.28a) into (4.27) gives

Bn(_Z_) = [1- f3z _ 2IXZ
A

+15(z, n)J{eYZ + rz
2

eF +13(z, n + 1,0)
n + 1 n nA n2 n n2

hdz,n) ( Z )An~1 Z n~1 }
+ 2 + --1 L Xn,k(z)+--1 L Yn,k(Z) .

n n+ k~O n+ k~O

(4.29)

(A) If (4.3) holds, then we can substitute (4.19) and (4.21) into (4.29)
and, after multiplying and rearranging terms and applying Lemmas 2.1, 2.2,
and 4.3, we conclude that assertion (A) holds.

Before proving (B) we note that by Theorem 3.1, (4.18), and (4.23) one
has for Izl ~R and n?:no(R)

I:~~ Xn,dZ)I~2~2(R)M(R)ktl 1t5kl ,

I:~~ Yn,k(Z)1 ~2~2(R)M(R) kt 111k1·

(B) If (4.4) holds, then it can be seen that

(4.30)

n

L It5 k I= O(log n)
k~1

If (4.5) holds, then

n

L l<5k l =O(nl -,)
k=1

If (4.6) holds then

and

or

n

L I11k 1= O(log n).
k~1

n

L l11kl =O(nl - u
).

k~1

(4.31 )

n

L l<5k l =O(n<+l)
k=1

and
n

L l11kl =O(n l - u
),

k~1

0<0'<1.

We then deduce assertion (B) by applying (4.28b), (4.30), (4.31), and
Lemmas 2.1 and 2.2 to (4.29).

By means of the final theorem in this section one can see that the results
(Theorems 4.1 and 4.2) for denominators of continued fractions (4.1) are
all applicable to the nth numerators An(z), as well.



ASYMPTOTIC BEHAVIOR OF POLYNOMIALS 85

THEOREM 4.4. Let An (z) denote the nth numerator of the continued
fraction (4.1) and let {B~ (z)} be defined by B~ (z) := A n + 1 (z)/a l z'\ n ~ -1.
Then B~ (z) is the nth denominator of the continued fraction

{An (z)} and {B~ (z)} converge and diverge together, and

1" 1 (n + l)A (z) . t (Z)Im---A--=hmB --
n~ooal Z n n+1 n~oo n-I n+1

(4.32 )

(4.33 )

if the limit on the right side exists.

Proof It follows from the recurrence relations defining {An(z)} that
{B~ (z)} satisfies

B~ 1 (z) = 0, B6(Z) = 1, B~(z) = (1 + f3n+ IZ) B~_I (z) + an+IZAB~_2 (z),

n = 1, 2,3, ... "

Hence B~(z) is the nth denominator of (4.32). I

5. ApPLICATIONS AND EXAMPLES.

In this section we discuss briefly some important types of continued
fractions that are subsumed under (1.7) and describe interpretations of
Theorems 4.1 and 4.2 in these special situations. Most of the discussion is
restricted to the (A) parts of these theorems, since the results for the (B)
parts do not substantially differ from those given by Theorems 4.1 and 4.2.
We also establish connections with orthogonal polynomial sequences.

5.1. REGULAR C-FRACTIONS. Let Bn(z) denote the nth denominator of
a regular C-fraction

(5.1 )

In the terminology of Section 4 we have rxn = an, rx = a, f3n = f3 = 0, A. = 1,
Y = a, r= - ~ a2, L1 := L;'=2 (ak - a), e = 0, and pin) is defined by (4.2). If

(5.2)
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and t, (Z, n) is defined by

B
n
(_Z_) _eaz = eaz [(,1- 2a) z - (3/2) a

2
z

2J+ tdz, n),
n+1 n n (5.3)

then there exists a function T, (R, n) such that

for Iz I~ R, n ~ 1 and lim T,(R,n)=O.

(5.4 )

Moreover, for n ~ 1,

and
ak ak

- '[ ,1 - la(3k + 1)] (1)
Pen) - _ + 2 + 0 - (55)

k -k! n(k-1)! n"

for 1~k~dn, where d2m =d2m +, =mfor m~ 1.

It is known that the sequence of approximants {An(z)/Bn(z)} of (5.1)
forms a "staircase" in the corresponding Pade table [9, Theorem 5.19]. For
the regular C-fraction (5.1) of Gauss, the coefficients an are given by

(A+m)(C-B+m)
a - - --.::...------:...:...------'.:....

2m+'- (C+2m)(C+2m+1)'
(B+m)(C-A +m)

a 2m = - (C+2m-1)(C+2m)' (5.6)

where the complex constants A, B, C are chosen in such a manner that
0# an E iC for n ~ 1. It is well known that this regular C-fraction (5.1)
converges to a function g(z), meromorphic in the domain
D, :=[z:O<arg(z-1)<2n] and holomorphic at z=o with g(O)=O;
moreover, g(z) provides the analytic continuation into D, of

_....::2_F .:...,(.:....A.:....,_B.:....;C_'.:....·z-:..)_ _ 1
2FdA,B+1;C+1;z) ,

where 2F, (A, B; C; z) denotes the hypergeometric series

(5.7a)

(5.7b)

convergent for Izl<1 and (A)o:=1, (A)n:=A(A+1)···(A+n-1), for
n ~ 1 [9, Theorem 6.1]. It can readily be shown that

lim an=a=-~
n~ 00

(5.8)

and

rn := max Iam + ~ I= 11 - 2A + 2B I 0 (!) + 0 (~) (5.9)
m~n n n
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[2, Eq. (5.4)]. It follows that

lan+~1 ';;;;En- 2
, for E>O, n~ 1 if A=B+~ (5.10a)

and
lan+~1 ';;;;En~l, for E>O, n~ 1 if A#B+~. (5.10b)

Thus by Theorems 4.1 and 4.2

lim B
n
(_Z_) = e-z/4

n~oo n+l
for all Z E C, (5.11 )

the order of the convergence being given by the theorems of Section 4;
moreover, for 1,;;;; k,;;;; dn and n ~ 1,

{

( _1/4)k-t [A + (1/8)(3k + 1)] + 0 (~)

(-1/4)k n(k-l)! n '
(n)_ +

Pk - k! 0co~n)

·f A 11 =B+ 2,

·f A 11 #B+ 2.

(5.12)

5.2. GENERAL T-FRACTIONS. General T-Fractions are continued
fractions of the form

(5.13 )

They are distinguished by the property that, if all GnolO, then their
sequence of approximants forms the main diagonal in a two-point Pade
table [9, Sect. 7.3]. If Fn>O and Gn>O for all n, then (5.13), called a
positive T-fraction, is intimately related to the strong Stieltjes moment
problem [10]. The denominators of positive T-fractions give rise to
orthogonal Laurent polynomials on [0,(0) [8]. Here we consider general
T-fractions (5.13) satisfying

lim Fn=FEC
n~ 00

and (5.14 )

In the terminology of Section 4 we have IXn=Fn, Pn=Gn, A=I, IX=F,
P = G, Y = F + G, r = - HF + G)(3F + G), A = L~ (Fk - F), e =
Lr" (Gk-G), if these series converge. pin) is defined by (4.2), where Bn(z)
denotes the nth denominator of (5.13). If

and (5.15 )
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and tdz, n) is defined by

B
n
(_Z_) _eYz = eYZ [FZ2 + (A + e - 2F - G) zJ + tdz, n),

n+ 1 n n (5.16)

then there exists a function T] (R, n) such that

for Iz I~ R, n ~ 1 and lim T] (R, n) = O.
n~ 00

Moreover, for n ~ 1

(n) A+e-2F-G (1)p] =y+ +0 - ,
n n

(k)_yk yk-2[(k-1)F+y(A+e-2F-G)]
Pn - k! + n(k-1)!

(5.17a)

(5.17b)

The case in which y = F+ G = 0 has received special attention by
Waadeland and others (see, e.g., [18 and references therein] [4]). In
particular one obtains F = - G = 0 when

B+n-1
F]:= 1, Fn := (C+n-2)(C+n-1)' n~2;

-1
Gn := ,n~l, (5.18)

C+n-1

where Band C are complex constants chosen so that 0"# Fn E C and GnEe

for n ~ 1. With these coefficients the general T-fraction (5.13) converges to
the meromorphic function

f(z):= ]FdB+ 1; C+ l;z) -1,
]F] (B; C; z)

00 (B)n zn
]F] (B; C; z):= L: (C) " (5.19)

n=O n n.

The convergence is uniform on compact subsets of C containing no pole of
f(z). It follows from (5.18) that

and £>0, k~ 1. (5.20)

Hence by Theorems 4.1 and 4.2, for z E C, n ~ 1,

. (Z) (log n)lIm B -- =eYZ = 1 p(n)= 1 p(n)=o --
n~oo n n+l '0' k n'

(5.21 )
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5.3. ASSOCIATED CONTINUED FRACTIONS AND J-FRACTIONS. Here we let
Bn(z) denote the nth denominator of an associated continued fraction

(5.22)

Its approximants form the main diagonal of a Pade table. Using terminol
ogy from Section 4 we have IY. n= -Kn, f3n=L n, ,,1,=2, IY.= -K= -limKn ,

f3 = L = lim L n, LJ = - L~ (Kn- K) and e = L~ (Ln- L) if the limits in
question exist, IY. = K = 0 if lim Kn does not exist, Y = Land
r= -(K+!L2

).

If

and (5.23 )

and tdz, n) is defined by

(
Z) Lz LZ[rz

2
+(e-L)Z] tdz,n)Bn -- -e =e +--,

n+l n n

then there exists a function T 1 (R, n) satisfying

(5.24 )

It l (z, n)1 ::::; T 1 (R, n) for Izl::::;R,n~1 and lim T1(R,n)=O.

p~n) = 1, e-L (1)p(n)=L+--+o - ,
1 n n

(n)_L k L k
-

2[(k-l)r+L(e-L)] (!)
Pk - k! + n(k-l)! +0 n '

(5.25a)

(5.25b)

Closely related to the associated continued fractions (5.22) are the
J-fractions

(5.26)

If Bn(z) and Bn(O denote the nth denominators of (5.22) and (5.26),
respectively, then it can be shown that

and n ~O. (5.27)

It follows that

. (z)n _ (n +1). (Z)11m -- B -- =hmB --
n~oo n+l n z n~oo n n+l '

(5.28 )
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provided the limit on the right side exists. Thus convergence of
Bn(z/(n+ 1)) can be applied to lin (0 by means of (5.28).

Of special interest are real i-fractions (5.26) with the further condition

for n ~ 2 and for n ~ 1. (5.29 )

One reason for their importance is that every orthogonal (monic) polyno
mial sequence can be realized as the sequence of nth denominators of a real
J-fraction and, conversely, the sequence {lin (O} of every real J-fraction is
an orthogonal (monic) polynomial sequence with respect to some distribu
tion function ljt(t) on IR [9, Favard's Theorem, p.254].

As an example we consider Legendre polynomials {Pn (x)} defined by

2n-1 n-l
Po(x) := 1, PI (x) :=x, Pn(x):=-- xPn - 1 (x) --- P n- 2 (x),

n n

n =2,3,4, ...,

It can be seen that Pn (x) is the nth denominator of

(5.30)

1 -(1/2) -(2/3) -(3/4)
- ---
x + (3/2) x + (5/3) x + (7/4) x +

which is equivalent to the real J-fraction

-«n-l)/n)

+ «2n -1)/n) x +
(5.31 )

00 (_ K n ). (n - 1)2
n~ -x- ,K1 .=-I,Kn =(2n_l)(2n_3)' n = 2,3,4,.... (5.32)

If lin(x) denotes the nth denominator of (5.32), then it is readily seen that

n =0,1,2, .... (5.33)

Thus Bn(x) is the monic Legendre polynomial of degree n. Performing an
equivalence transformation on the real J-fraction (5.32) and replacing X-I

by z yields the associated continued fraction

Z _(l2j1.3)Z2 _(22j3.5)z2

1+ + 1 +
- (n - l)2j(2n - 1)(2n - 3» Z2

+ 1 +

(5.34 )
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Letting B n (z) denote the nth denominator of (5.34) we obtain

91

Since -K:= limn~ C() - Kn= -!, Kn+1 - K = Ij4(4n 2 -1), and hence

C()

A:= - L (Kn+j-K)=-~
n~j

(a telescoping series), (5.36 )

an application of Theorem 4.1 and 4.2 with y= L = L n = e = 0 and r = -!
yields

(
z ) j 2B n -- -1=(-4Z jn)+(tdz,n)jn),

n+l

where there exists a function T( (R, n) satisfying

(5.37)

I tdz, n)1 ~ TdR, n)

Moreover,

for Iz I~ R, n~ 1, and lim T j (R, n) = O.

p~n) = 1 and pin) = 0 G) for 1~ k ~ dn, n = 1, 2,3, ..., (5.38)

where pr) is defined by (4.2). From (5.35) and (5.37) we see that

. (z)n _(n +1). (z)hm -- Bn -- = hm Bn --1 =1,
n~C() n+1 z n~C() n+

(5.39 )

the convergence being uniform on all compact subsets of C.
Another interesting result along this line can be obtained by considering

the regular C-fraction

K n defined by (5.32), (5.40)

whose nth denominator is denoted by Bn(w). We write

B (~) = ~ p'(n)wk

n +1 L. k 'n k~O

It follows that

(5.41 )

(5.42)
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An application of Theorems 4.1 and 4.2 with y = a = -lim K n = -~,

T= -i2, L1 = -k yields

where

Iidz2
, n)1 ~ TdR 2

, n) for Izi ~R, n~ 1 and

Moreover, for 1~ k ~ an and n ~ 1,

(5.43b)

(5.44 )and
A(n)_(-1/4)k (-1/4)k-I(3/8)k (~)

Pk - k! + n(k-1)! +0 n'

From (5.42) one also sees that dn= 2an and pin) = 0 if k is odd. By further
use of (5.42) and (5.43) one can show that, for 1~ k ~ an and n ~ 1,

1 [( -1/4)k + (-1/4)k-1 (3/8) k + 0 (~)J.
(n + 1)k k! n(k - 1)! n

(5.45 )

It follows from (5.33), (5.35), (5.42), and (5.44) that

lim 2
n
(n!)2 ( z )n p (Ff=l) = e-z2/4

n~ 00 (2n)! Ff=l n Z '

the convergence being uniform on every set 1 z I ~ R.

(5.46)

REFERENCES

1. F. V. ATKINSON, "Discrete and Continuous Boundary Problems," Academic Press,
New York, 1964.

2. CHRISTOPHER BALTUS, AND WILLIAM B. JoNES, Truncation error bounds for modified
continued fractions with applications to special functions, Numer. Math. 55 (1989),
281-307.

3. T. S. CHIHARA, "An Introduction to Orthogonal Polynomials," Mathematics and Its
Applications Series, Gordon & Breach, New York, 1978.

4. S. CLEMENT COOPER, WILLIAM B. JoNES, AND ARNE MAGNUS, General T-fraction
expansions for ratios of hypergeometric functions, App!. Numer. Math. 4 (1988), 241-251.

5. Gf:ZA FREUD, "Orthogonal Polynomials," Pergamon, New York, 1971.
6. J. S. GERONIMO AND K. M. NASE, Scattering theory and polynomials orthogonal on Ihe

real line, Trans. Amer. Math. Soc. 258, No.2 (1980), 467-494.
7. LISA LoRENTZEN JACOBSEN, A note on separate convergence of continued fractions,

J. Comput. App!. Math., to appear.
8. WILLIAM B. JONES, OLAV NJA.STAD, AND W. J. THRON, Two-point Pade expansions for a

family of analytic functions, J. Comput. App!. Math. 9 (1983), 105-123.



ASYMPTOTIC BEHAVIOR OF POLYNOMIALS 93

9. WILLIAM B. JONES AND W. J. THRON, "Continued fractions: Analytic theory and applica
tions," Encyclopedia of Mathematics and its Applications, Vol. II, Addison-Wesley,
Reading, MA, 1980; distributed now by Cambridge Univ. Press, New York.

10. WILLIAM B. JONES, W. J. THRON, AND HAAKON WAADELAND, A strong Stieltjes moment
problem, Trans. Amer. Math. Soc. 261, No.2 (1980), 503-528.

11. WILLIAM B. JONES, W. J. THRON, AND NANCY J. WYSHINSKI, An application of separate
convergence for continued fractions to orthogonal polynomials, Canad. Math. Bull., to
appear.

12. PAUL NEVAI (Ed.), "Orthogonal Polynomials: Theory and Practice," Kluwer Academic,
Hingham, MA, 1989.

13. OLAV NJASTAD A survey of some results on separate convergence of continued fractions,
in "Analytic Theory of Continued Fractions III" (Lisa Jacobsen, Ed.), pp. 88-115, Lecture
Notes in Mathematics, Vol. 1406, Springer-Verlag, New York, 1989.

14. G. SZEGO, "Orthogonal Polynomials," American Mathematical Society Colloquium
Publications, Vol. 23, Amer. Math. Soc., New York, 1959.

15. W. J. THRON, Some results on separate convergence of continued fractions, "Computa
tional Methods and Function Theory (Proceedings Valparaiso, 1989)," pp. 191-200,
Lecture Notes in Mathematics, Vol. 1435, Springer-Verlag, New York, 1990.

16. W. J. THRON, Separate convergence of general T-fractions, Proc. Amer. Math. Soc. Ill,
No.1 (1991),75-80.

17. W. J. THRON, Order and type of entire functions arising from separately convergent
continued fractions, J. Comput. Appl. Math. 32 (1990), 273-279.

18. W. J. THRON AND HAAKON WAADELAND, Convergence questions for limit periodic con
tinued fractions, Rocky Mountain J. Math. 2, No.4 (1981), 641-657.

19. W. VAN ASSCHE, "Asymptotics for Orthogonal Polynomials," Lecture Notes in Mathe
matics, Vol. 1265, Springer-Verlag, New York, 1987.

20. W. VAN ASSCHE, Asymptotics for orthogonal polynomials and three-term recurrences,
in "Orthogonal Polynomials: Theory and Practice" (Paul Nevai, Ed.), Kluwer Academic,
Hingham, MA, 1989.

640/71/1·7


